Arginine Methylation Initiates BMP-Induced Smad Signaling.

نویسندگان

  • Jian Xu
  • A Hongjun Wang
  • Juan Oses-Prieto
  • Kalpana Makhijani
  • Yoko Katsuno
  • Ming Pei
  • Leilei Yan
  • Y George Zheng
  • Alma Burlingame
  • Katja Brückner
  • Rik Derynck
چکیده

Kinase activation and substrate phosphorylation commonly form the backbone of signaling cascades. Bone morphogenetic proteins (BMPs), a subclass of TGF-β family ligands, induce activation of their signaling effectors, the Smads, through C-terminal phosphorylation by transmembrane receptor kinases. However, the slow kinetics of Smad activation in response to BMP suggests a preceding step in the initiation of BMP signaling. We now show that arginine methylation, which is known to regulate gene expression, yet also modifies some signaling mediators, initiates BMP-induced Smad signaling. BMP-induced receptor complex formation promotes interaction of the methyltransferase PRMT1 with the inhibitory Smad6, resulting in Smad6 methylation and relocalization at the receptor, leading to activation of effector Smads through phosphorylation. PRMT1 is required for BMP-induced biological responses across species, as evidenced by the role of its ortholog Dart1 in BMP signaling during Drosophila wing development. Activation of signaling by arginine methylation may also apply to other signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does Smad6 methylation control BMP signaling in cancer?

Bone morphogenetic proteins (BMPs), a class of secreted TGF-β-related proteins, play key roles in many cell differentiation decisions in metazoan development. BMP signaling is dysregulated in developmental syndromes and contributes to progressive diseases, including cancers. BMP ligands activate signaling responses through tetrameric complexes consisting of 2 type II (RII) and 2 type I (RI) tra...

متن کامل

BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells

Naive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD reporter transgene in naive mESCs correlated with lower levels of genomic DNA methylation, high express...

متن کامل

Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest

Cell cycle regulation is critical for chondrocyte differentiation and hypertrophy. Recently we identified the Notch signaling pathway as an important regulator of chondrocyte proliferation and differentiation during mouse cartilage development. To investigate the underlying mechanisms, we assessed the role for Notch signaling regulation of the cell cycle during chondrocyte differentiation. Real...

متن کامل

Dysregulated bone morphogenetic protein signaling in monocrotaline-induced pulmonary arterial hypertension.

BACKGROUND Mutations in the bmpr2 gene, encoding the type II bone morphogenetic protein (BMP) receptor, have been identified in patients with pulmonary arterial hypertension (PAH), implicating BMP signaling in PAH. The aim of this study was to assess BMP signaling and its physiological effects in a monocrotaline (MCT) model of PAH. METHODS AND RESULTS Expression of BMP receptors Ib and II, an...

متن کامل

Spatial Segregation of BMP/Smad Signaling Affects Osteoblast Differentiation in C2C12 Cells

BACKGROUND Bone morphogenetic proteins (BMPs) are involved in a plethora of cellular processes in embryonic development and adult tissue homeostasis. Signaling specificity is achieved by dynamic processes involving BMP receptor oligomerization and endocytosis. This allows for spatiotemporal control of Smad dependent and non-Smad pathways. In this study, we investigate the spatiotemporal regulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 51 1  شماره 

صفحات  -

تاریخ انتشار 2013